Engineering a multicompartment in vitro model for dorsal root ganglia phenotypic assessment

设计用于背根神经节表型评估的多室体外模型

阅读:2
作者:Sydney M Caparaso, Adan L Redwine, Rebecca A Wachs

Abstract

Despite the significant global prevalence of chronic pain, current methods to identify pain therapeutics often fail translation to the clinic. Phenotypic screening platforms rely on modeling and assessing key pathologies relevant to chronic pain, improving predictive capability. Patients with chronic pain often present with sensitization of primary sensory neurons (that extend from dorsal root ganglia [DRG]). During neuronal sensitization, painful nociceptors display lowered stimulation thresholds. To model neuronal excitability, it is necessary to maintain three key anatomical features of DRGs to have a physiologically relevant platform: (1) isolation between DRG cell bodies and neurons, (2) 3D platform to preserve cell-cell and cell-matrix interactions, and (3) presence of native non-neuronal support cells, including Schwann cells and satellite glial cells. Currently, no culture platforms maintain the three anatomical features of DRGs. Herein, we demonstrate an engineered 3D multicompartment device that isolates DRG cell bodies and neurites and maintains native support cells. We observed neurite growth into isolated compartments from the DRG using two formulations of collagen, hyaluronic acid, and laminin-based hydrogels. Further, we characterized the rheological, gelation and diffusivity properties of the two hydrogel formulations and found the mechanical properties mimic native neuronal tissue. Importantly, we successfully limited fluidic diffusion between the DRG and neurite compartment for up to 72 h, suggesting physiological relevance. Lastly, we developed a platform with the capability of phenotypic assessment of neuronal excitability using calcium imaging. Ultimately, our culture platform can screen neuronal excitability, providing a more translational and predictive system to identify novel pain therapeutics to treat chronic pain.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。