GSK-3β inhibitor TWS119 promotes neuronal differentiation after hypoxic-ischemic brain damage in neonatal rats

GSK-3β抑制剂TWS119促进新生大鼠缺氧缺血性脑损伤后的神经元分化

阅读:2
作者:Limin Gao, Shuqiang Gao, Hailei Shan, Yanqiu Wu, Qili Zhou

Abstract

Brain injury in preterm infants is a major cause of disability and mortality in children. GSK-3β is a common pathogenic factor for cognitive dysfunction and involves in neuronal proliferation and differentiation. However, GSK-3β affected neuronal differentiation and its molecular pathogenesis after hypoxic-ischemic brain damage in neonatal rats remains unclear. This study investigated the effects of GSK-3β inhibitor (TWS119) on cell cycle regulatory proteins, a neuronal differentiation factor (CEND1), maturation neurons, T-box brain transcription factor 1 (TBR1)-positive neurons to clarify the mechanisms of hypoxic-ischemic brain damage in neonatal rats. We used hypoxic-ischemic Sprague-Dawley neonatal rats with brain damage as models. These rats were used for investigating the effect of GSK-3β on cell cycle regulatory proteins, neuronal differentiation factor (CEND1), maturation neurons, TBR1-positive neurons by western blot and immunofluorescence. Cyclin D1 (a positive cell cycle regulator) expression decreased, and p21 (a negative cell cycle regulator) expression increased in the TWS119 group compared to the hypoxia-ischemia (HI) group 7 days after HI. Additionally, compared to the HI group, TWS119 treatment up-regulated CEND1 expression and promoted neuronal differentiation and cortex development based on NeuN and TBR1 expression. Our study suggests that the GSK-3β inhibitor TWS119 promotes neuronal differentiation after hypoxic-ischemic brain damage in neonatal rats by inhibiting cell cycle pathway.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。