Mechanism for the TtDnaA-Tt-oriC cooperative interaction at high temperature and duplex opening at an unusual AT-rich region in Thermoanaerobacter tengcongensis

高温下TtDnaA-Tt-oriC协同作用及在异常富含AT区域的双链打开机制

阅读:7
作者:Huadong Pei, Jingfang Liu, Jie Li, Aobo Guo, Jian Zhou, Hua Xiang

Abstract

Thermoanaerobacter tengcongensis is an anaerobic low-GC thermophilic bacterium. To further elucidate the replication initiation of chromosomal DNA at high temperature, the interaction between the replication initiator (TtDnaA) and the putative origin (Tt-oriC) in this thermophile was investigated. We found that efficient binding of TtDnaA to Tt-oriC at high temperature requires (i) at least two neighboring DnaA boxes, (ii) the specific feature of the TtDnaA Domain IV and (iii) the self-oligomerization of TtDnaA. Replacement of the TtDnaA Domain IV by the counterpart of Escherichia coli DnaA or disruption of its oligomerization by amino acid mutations (W9A/L20S) abolished the oriC-binding activity of TtDnaA at 60 degrees C, but not at 37 degrees C. Moreover, ATP-TtDnaA, but not ADP-TtDnaA or the oligomerization-deficient mutants was able to unwind the Tt-oriC duplex. The minimal oriC required for this duplex opening in vitro was demonstrated to consist of DnaA boxes 1-8 and an unusual AT-rich region. Interestingly, although no typical ATP-DnaA box was found in this AT-rich region, it was exclusively bound by ATP-TtDnaA and acted as the duplex-opening and replication-initiation site. Taken together, we propose that oligomerization of ATP-DnaA and simultaneously binding of several DnaA boxes and/or AT-rich region may be generally required in replication initiation at high temperature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。