Mechanism of catalysis and inhibition of Mycobacterium tuberculosis SapM, implications for the development of novel antivirulence drugs

结核分枝杆菌SapM的催化和抑制机制及其对新型抗毒药物开发的意义

阅读:12
作者:Paulina Fernandez-Soto, Alexander J E Bruce, Alistair J Fielding, Jennifer S Cavet, Lydia Tabernero

Abstract

Mycobacterium tuberculosis (Mtb) SapM is a secreted virulence factor critical for intracellular survival of the pathogen. The role of SapM in phagosome maturation arrest in host macrophages suggests its potential as a drug target to assist in the clearance of tuberculosis infection. However, the mechanism of action of SapM at the molecular level remains unknown. In this study, we provide new insights into the mechanism of catalysis, substrate specificity and inhibition of SapM, and we identify the critical residues for catalysis and substrate binding. Our findings demonstrate that SapM is an atypical monoester alkaline phosphatase, with a serine-based mechanism of catalysis probably metal-dependent. Particularly relevant to SapM function and pathogenesis, is its activity towards PI(4,5)P2 and PI3P, two phosphoinositides that function at the early stages of microbial phagocytosis and phagosome formation. This suggests that SapM may have a pleiotropic role with a wider importance on Mtb infection than initially thought. Finally, we have identified two inhibitors of SapM, L-ascorbic acid and 2-phospho-L-ascorbic, which define two different mechanisms by which the catalytic activity of this phosphatase could be regulated. Critically, we demonstrate that 2-phospho-L-ascorbic reduces mycobacterial survival in macrophage infections, hence confirming the potential of SapM as a therapeutic drug target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。