Augmentation of Endothelial S1PR1 Attenuates Postviral Pulmonary Fibrosis

内皮细胞 S1PR1 增强可减轻病毒感染后肺纤维化

阅读:2
作者:Patricia L Brazee, Andreane Cartier, Andrew Kuo, Alexis M Haring, Trong Nguyen, Lida P Hariri, Jason W Griffith, Timothy Hla, Benjamin D Medoff, Rachel S Knipe

Abstract

Respiratory viral infections are frequent causes of acute respiratory distress syndrome (ARDS), a disabling condition with a mortality of up to 46%. The pulmonary endothelium plays an important role in the development of ARDS as well as the pathogenesis of pulmonary fibrosis; however, the therapeutic potential to modulate endothelium-dependent signaling to prevent deleterious consequences has not been well explored. Here, we used a clinically relevant influenza A virus infection model, endothelial cell-specific transgenic gain-of-function and loss-of-function mice as well as pharmacologic approaches and in vitro modeling, to define the mechanism by which S1PR1 expression is dampened during influenza virus infection and determine whether therapeutic augmentation of S1PR1 has the potential to reduce long-term postviral fibrotic complications. We found that the influenza virus-induced inflammatory milieu promoted internalization of S1PR1, which was pharmacologically inhibited with paroxetine, an inhibitor of GRK2. Moreover, genetic overexpression or administration of paroxetine days after influenza virus infection was sufficient to reduce postviral pulmonary fibrosis. Taken together, our data suggest that endothelial S1PR1 signaling provides critical protection against long-term fibrotic complications after pulmonary viral infection. These findings support the development of antifibrotic strategies that augment S1PR1 expression in virus-induced ARDS to improve long-term patient outcomes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。