Abstract
Hyaluronic acid (HA)-based delivery systems for doxorubicin (DOX) have been developed to selectively target cancer cells and enhance their therapeutic effects while reducing systemic side effects. However, conventional methods for preparing HA-based drug delivery systems are often limited by multistep synthetic processes, time-consuming purification, and the use of crosslinkers or surfactants, which can cause undesired toxicities. To resolve these issues, we developed a facile one-pot method to prepare self-assembled sodium hyaluronate/doxorubicin (HA/DOX) nanoaggregates by mixing HA and DOX. The self-assembled HA/DOX nanoaggregates were formed via cation-π interactions between the aromatic moiety of DOX and Na+ ions in HA as well as electrostatic interactions between HA and DOX. The optimized HA/DOX nanoaggregates with a [DOX]/[HA] molar ratio of 5 had an average particle size of approximately 250 nm and a sphere-like shape. In vitro studies revealed that HA/DOX nanoaggregates effectively targeted CD44-overexpressing cancer cells, selectively delivering DOX into the cell nuclei more efficiently than free DOX and resulting in enhanced cytotoxic effects. Annexin V and transferase dUTP nick-end labeling assays confirmed that HA/DOX nanoaggregates induced apoptosis via DNA fragmentation more effectively than free DOX.