SNX30 inhibits lung adenocarcinoma cell proliferation and induces cell ferroptosis through regulating SETDB1

SNX30通过调控SETDB1抑制肺腺癌细胞增殖并诱导细胞铁死亡

阅读:3
作者:Xinjie Fan, Qichu Zhu, Chengzhuo Du, Jinlai Chen, Yingming Su

Background

Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.

Conclusion

SNX30 inhibits lung adenocarcinoma cell proliferation and induces ferroptosis by regulating SETDB1 expression.

Methods

SNX30 levels in lung adenocarcinoma cell lines (A549 and HCC827) were determined using reverse transcription quantitative real-time PCR (RT-qPCR) or western blotting. Cell proliferation and apoptosis were assessed by CCK8 and flow cytometry, respectively. The intracellular levels of total iron and Fe2+ were detected using Iron Assay Kits. Reactive oxygen species (ROS) levels were evaluated using a DCFH-DA probe and flow cytometry. Cysteine (Cys), glutathione (GSH), and glutathione peroxidase 4 (GPX4) levels were measured using detection assay kits. Other related markers, including Ptgs2, Chac1, SETDB1 cleaved-Caspase3, and Caspase3 were analyzed by RT-qPCR or western blotting.

Objective

This study aimed to elucidate the functions and specific mechanisms of action of SNX30 in lung adenocarcinomas.

Results

SNX30 is downregulated in lung adenocarcinoma cell lines. SNX30-plasmid depressed lung adenocarcinoma cell proliferation, accelerated apoptosis, enhanced cleaved-Caspase3 expression and cleaved-Caspase3/Caspase3 ratio. Ferrostatin-1 significantly reversed the effects of the SNX30-plasmid on cell ferroptosis in lung adenocarcinoma, as confirmed by the reduced ROS levels, inhibited intracellular total iron and Fe2+ levels, decreased Ptgs2 and Chac1 expression, and increased Cys, GSH, and GPX4 release. We observed that the level of SETDB1 was lower in the SNX30-plasmid group than in the control-plasmid group, whereas the opposite results in ferrostatin-1 treated cells. SNX30 negatively regulates SETDB1 expression in lung adenocarcinoma cells. The upregulation of SETDB1 reversed the effects of the SNX30-plasmid on ferroptosis in lung adenocarcinoma cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。