Octanoic Acid and Decanoic Acid Inhibit Tunicamycin-Induced ER Stress in Rat Aortic Smooth Muscle Cells

辛酸和癸酸抑制大鼠主动脉平滑肌细胞衣霉素诱导的内质网应激

阅读:16
作者:Wanida Sukketsiri, Varomyalin Tipmanee, Panlekha Rungruang, Mayo Higashihara, Tomoko Sumi, Tatsuya Moriyama, Nobuhiro Zaima

Abstract

ER stress is a crucial factor in the progression of vascular cell diseases. Notably, octanoic acid (OA; C8:0) and decanoic acid (DA; C10:0), prominent components of medium-chain fatty acids (MCFAs), may provide potential health benefits. However, their effects on vascular smooth muscle cells (VSMCs) remain unknown. Given the link between ER stress and vascular cell pathological conditions, the primary goal of this research is to investigate the protective effects of OA and DA against ER stress induction in rat aortic smooth muscle cells (RASMCs). To achieve this objective, RASMCs were pretreated with OA and DA at concentrations of 250 and 500 μM for 24 h. Subsequently, the cells were exposed to 1 μg/mL of tunicamycin, an ER stress inducer, for an additional 24 h. Apoptosis was assessed using DAPI staining, while DCFH2-DA probe was used to measure ROS levels. Furthermore, the gene expression of ER stress markers, such as CHOP, GRP78, ATF4, and eIF2α, as well as contractile markers like αSMA and MYH11, was assessed using real-time reverse transcription polymerase chain reaction. Moreover, the αSMA protein level was measured using immunocytochemistry techniques. The study revealed that OA and DA significantly mitigated cell death caused by tunicamycin, decreased ROS production, and inhibited the gene expression of ER stress markers (CHOP, GRP78, and eIF2α). Notably, OA and DA also inhibited the expression of contractile genes (α-SMA and MYH11) and reduced the number of α-SMA-positive cells in tunicamycin-treated RASMCs. These findings indicate that OA and DA offer protection against ER stress-stimulated cell death and ROS generation in VSMCs, thereby supporting their potential therapeutic applications for safeguarding these cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。