Memantine ameliorates motor impairments and pathologies in a mouse model of neuromyelitis optica spectrum disorders

美金刚可改善视神经脊髓炎谱系障碍小鼠模型的运动障碍和病理

阅读:20
作者:Leung-Wah Yick, Chi-Ho Tang, Oscar Ka-Fai Ma, Jason Shing-Cheong Kwan, Koon-Ho Chan

Background

Neuromyelitis optica spectrum disorders (NMOSD) are central nervous system (CNS) autoimmune inflammatory demyelinating diseases characterized by recurrent episodes of acute optic neuritis and transverse myelitis. Aquaporin-4 immunoglobulin G (AQP4-IgG) autoantibodies, which target the water channel aquaporin-4 (AQP4) on astrocytic membrane, are pathogenic in NMOSD. Glutamate excitotoxicity, which is triggered by internalization of AQP4-glutamate transporter complex after AQP4-IgG binding to astrocytes, is involved in early NMOSD pathophysiologies. We studied the effects of memantine, a N-methyl-D-aspartate (NMDA) receptor antagonist, on motor impairments and spinal cord pathologies in mice which received human AQP4-IgG.

Conclusions

Our findings support that glutamate excitotoxicity and neuroinflammation play important roles in complement-independent pathophysiology during early development of NMOSD lesions, and highlight the potential of oral memantine as a therapeutic agent in NMOSD acute attacks.

Methods

Purified IgG from AQP4-IgG-seropositive NMOSD patients were passively transferred to adult C57BL/6 mice with disrupted blood-brain barrier. Memantine was administered by oral gavage. Motor impairments of the mice were assessed by beam walking test. Spinal cords of the mice were assessed by immunofluorescence and ELISA.

Results

Oral administration of memantine ameliorated the motor impairments induced by AQP4-IgG, no matter the treatment was initiated before (preventive) or after (therapeutic) disease flare. Memantine profoundly reduced AQP4 and astrocyte loss, and attenuated demyelination and axonal loss in the spinal cord of mice which had received AQP4-IgG. The protective effects of memantine were associated with inhibition of apoptosis and suppression of neuroinflammation, with decrease in microglia activation and neutrophil infiltration and reduction of increase in levels of proinflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In addition, memantine elevated growth factors including brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor (VEGF) in the spinal cord. Conclusions: Our findings support that glutamate excitotoxicity and neuroinflammation play important roles in complement-independent pathophysiology during early development of NMOSD lesions, and highlight the potential of oral memantine as a therapeutic agent in NMOSD acute attacks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。