Exploratory analysis of a Novel RACK1 mutation and its potential role in epileptic seizures via Microglia activation

探索性分析新型 RACK1 突变及其通过小胶质细胞激活在癫痫发作中的潜在作用

阅读:9
作者:Sai Zhang #, Zhaofei Dong #, Jing Guo, Ze Li, Hong Wu, Linming Zhang, Fuli Min, Tao Zeng

Abstract

Seizures is a prevalent neurological disorder with a largely elusive pathogenesis. In this study, we identified the key gene RACK1 and its novel mutation RACK1-p.L206P as being associated with seizures through single-cell transcriptome sequencing (scRNA-seq) and whole exome sequencing (WES) techniques. Our findings reveal that the RACK1-p.L206P mutation significantly enhances proliferation, migration, phagocytic ability, and inflammatory activation in human microglia, which in turn affects neuronal excitability and synaptic function, culminating in typical seizure symptoms in the seizures. These effects were further validated in a mouse model using CRISPR/Cas9 gene editing technology. Mutant microglia exhibited increased activation and induced apoptosis in hippocampal neurons, leading to higher action potential frequency and excitatory synaptic marker expression. In vivo experiments demonstrated that RACK1-p.L206P mutant mice displayed classic seizure symptoms, with increased neuronal excitability and a tendency for action potential bursts during initial depolarization, along with more frequent spike discharges. Additionally, excitatory synapse density and size in the hippocampal CA1 region of mutant mice were significantly elevated, accompanied by increased expression of VGLUT1 and PSD95 within microglia. This study offers novel insights into the molecular mechanisms underlying seizures in the seizures and presents valuable clues for the development of future therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。