Quercetin, Main Active Ingredient of Moutan Cortex, Alleviates Chronic Orofacial Pain via Block of Voltage-Gated Sodium Channel

牡丹皮的主要活性成分槲皮素通过阻断电压门控钠通道缓解慢性颌面疼痛

阅读:14
作者:Zhanli Liu, Zhiming Shan, Haoyi Yang, Yanmei Xing, Weijie Guo, Jing Cheng, Yuanxu Jiang, Song Cai, Chaoran Wu, Jessica Aijia Liu, Chi Wai Cheung, Yunping Pan

Background

Chronic orofacial pain (COP) therapy is challenging, as current medical treatments are extremely lacking. Moutan Cortex (MC) is a traditional Chinese medicine herb widely used for chronic inflammatory diseases. However, the mechanism behind MC in COP therapy has not been well-established. The

Conclusions

Identifying Na v as the molecular target of quercetin clarifies the analgesic mechanism of MC, and provides ideas for the development of novel selective and efficient chronic pain relievers.

Methods

In this study, the main active ingredients and compound-target network of MC in COP therapy were identified through network pharmacology and bioinformatics analysis. Adult male Sprague-Dawley rats received oral mucosa lipopolysaccharide (LPS) injection to induce COP. Pain behaviors were evaluated by orofacial mechanical nociceptive assessment after intraganglionar injection. In vitro inflammatory cytokines in LPS-pretreated human periodontal ligament stem cells (hPDLSCs) and rat primary cultural trigeminal ganglion (TG) neurons were quantified by real-time quantitative polymerase chain reaction (RT-qPCR). Schrödinger software was used to verify the molecular docking of quercetin and critical targets. Whole-cell recording electrophysiology was used to evaluate the effect of quercetin on voltage-gated sodium (Na v ) channel in rat TG neurons.

Results

The assembled compound-target network consisted of 4 compounds and 46 targets. As 1 of the active components of MC correlated with most related targets, quercetin alleviated mechanical allodynia in LPS-induced rat model of COP (mechanical allodynia threshold median [interquartile range (IQR) 0.5 hours after drug administration: vehicle 1.3 [0.6-2.0] g vs quercetin 7.0 [6.0-8.5] g, P = .002). Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response and membrane functions play essential roles in MC-COP therapy. Five of the related targets were identified as core targets by protein-protein interaction analysis. Quercetin exerted an analgesic effect, possibly through blocking Na v channel in TG sensory neurons (peak current density median [IQR]: LPS -850.2 [-983.6 to -660.7] mV vs LPS + quercetin -589.6 [-711.0 to -147.8] mV, P = .006) while downregulating the expression level of proinflammatory cytokines-FOS (normalized messenger RNA [mRNA] level mean ± standard error of mean [SEM]: LPS [2. 22 ± 0.33] vs LPS + quercetin [1. 33 ± 0.14], P = .034) and TNF-α (normalized mRNA level mean ± SEM: LPS [8. 93 ± 0.78] vs LPS + quercetin [3. 77 ± 0.49], P < .0001). Conclusions: Identifying Na v as the molecular target of quercetin clarifies the analgesic mechanism of MC, and provides ideas for the development of novel selective and efficient chronic pain relievers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。