The Irr1/Scc3 protein implicated in chromosome segregation in Saccharomyces cerevisiae has a dual nuclear-cytoplasmic localization

与酿酒酵母染色体分离有关的 Irr1/Scc3 蛋白具有核质双重定位

阅读:2
作者:Piotr Kowalec, Jan Fronk, Anna Kurlandzka

Background

Correct chromosome segregation depends on the sister chromatid cohesion complex. The essential, evolutionarily conserved regulatory protein Irr1/Scc3, is responsible for the complex loading onto DNA and for its removal. We found that, unexpectedly, Irr1 is present not only in the nucleus but also in the cytoplasm.

Conclusions

Besides regulation of the sister chromatid cohesion complex in the nucleus Irr1 appears to have an additional role in the cytoplasm, possibly through interaction with the cytoplasmic protein Imi1.

Results

We show that Irr1 protein is enriched in the cytoplasm upon arrest of yeast cells in G1 phase following nitrogen starvation, diauxic shift or α-factor action, and also during normal cell cycle. Despite the presence of numerous Crm1-dependent export signals, the cytoplasmic pool of Irr1 is not derived through export from the nucleus but instead is simply retained in the cytoplasm. Cytoplasmic Irr1 interacts with the Imi1 protein implicated in glutathione homeostasis and mitochondrial integrity. Conclusions: Besides regulation of the sister chromatid cohesion complex in the nucleus Irr1 appears to have an additional role in the cytoplasm, possibly through interaction with the cytoplasmic protein Imi1.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。