PEDF Overexpression Ameliorates Cardiac Lipotoxicity in Diabetic Cardiomyopathy via Regulation of Energy Metabolism

PEDF 过表达通过调节能量代谢改善糖尿病心肌病的心脏脂毒性

阅读:1
作者:Tuohua Mao, Ye Wang

Background

Early alterations in cardiac energy metabolism and lipotoxicity are crucial factors in the pathogenesis and progression of diabetic cardiomyopathy (DCM). The excessive accumulation of lipid metabolic intermediates within the myocardium can lead to increased production of reactive oxygen species (ROS) and promote apoptosis. Pigment epithelium-derived factor (PEDF) has been shown to regulate cardiac energy metabolism; however, its role in modulating energy metabolism, ROS generation, and apoptosis in the context of DCM requires further investigation.

Conclusion

PEDF can effectively prevent cardiac hypertrophy, fibrosis remodeling, and the deterioration of diastolic dysfunction in DCM by modulating cardiac energy metabolism and mitigating ROS production and apoptosis induced by lipotoxicity.

Methods

PEDF was overexpressed in db/db mice via tail vein injection of adeno-associated virus 9(AAV9)-PEDF. At week 24, assessments were conducted on cardiac hypertrophy, fibrosis, cardiac function, and alterations in energy metabolism. Additionally, H9c2 cells were transfected with a PEDF plasmid and cultured under HG+PA conditions (33 mm glucose + 250 μM palmitic acid) for 24 hours. Subsequent analyses focused on changes in energy metabolism, ROS levels, and apoptosis.

Results

At 24 weeks, db/db mice exhibited hallmark features of DCM, including hyperglycemia, hyperlipidemia, cardiac hypertrophy, fibrosis, and diastolic dysfunction. Overexpression of PEDF reversed cardiac remodeling in these mice. In both db/db mice and HG+PA-treated H9c2 cells, PEDF overexpression modulated cardiac energy metabolism, mitigated lipotoxicity, and promoted the expression of adipose triglyceride lipase(ATGL) and glucose transporter type 4(Glut4) while inhibiting the expression of peroxisome proliferator-activated receptor alpha (PPARα), carnitine palmitoyltransferase 1 alpha (CPT1α), and scavenger receptor B2 (CD36). Additionally, PEDF overexpression reduced ROS generation and apoptosis in db/db mice myocardium and HG+PA-treated h9c2 cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。