A20 Restricts NOS2 Expression and Intestinal Tumorigenesis in a Mouse Model of Colitis-Associated Cancer

A20 限制小鼠结肠炎相关癌症模型中的 NOS2 表达和肠道肿瘤发生

阅读:2
作者:David W Basta, Mandy Vong, Adolat Beshimova, Brooke N Nakamura, Iulia Rusu, Michael G Kattah, Ling Shao

Aims

Colon cancer can occur sporadically or in the setting of chronic inflammation, such as in patients with inflammatory bowel disease. We previously showed that A20, a critical negative regulator of tumor necrosis factor signal transduction, could regulate sporadic colon cancer development. In this report, we investigate whether A20 also acts as a tumor suppressor in a model of colitis-associated cancer.

Background and aims

Colon cancer can occur sporadically or in the setting of chronic inflammation, such as in patients with inflammatory bowel disease. We previously showed that A20, a critical negative regulator of tumor necrosis factor signal transduction, could regulate sporadic colon cancer development. In this report, we investigate whether A20 also acts as a tumor suppressor in a model of colitis-associated cancer.

Conclusion

Mechanistically, we propose that A20 normally restricts tumor necrosis factor-induced nuclear factor kappa B-dependent production of iNOS in intestinal epithelial cells, thereby protecting against colitis-associated tumorigenesis. We also propose that A20 plays a direct role in regulating NO-dependent cell death.

Methods

Colitis and colitis-associated tumors were induced in wild-type and A20 intestinal epithelial cell-specific knockout (A20dIEC) mice using dextran sodium sulfate and azoxymethane. Clinicopathologic markers of inflammation were assessed in conjunction with colonic tumor burden. Gene expression analyses and immunohistochemistry were performed on colonic tissue and intestinal enteroids. Nitric oxide (NO) production and activity were assessed in whole colonic lysates and mouse embryonic fibroblasts.

Results

A20dIEC mice develop larger tumors after treatment with dextran sodium sulfate and azoxymethane than wild-type mice. In addition to elevated markers of inflammation, A20dIEC mice have significantly enhanced expression of inducible nitric oxide synthase (iNOS), a well-known driver of neoplasia. Enhanced iNOS expression is associated with the formation of reactive nitrogen species and DNA damage. Loss of A20 also enhances NO-dependent cell death directly.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。