Neuron-specific isoform of PGC-1α regulates neuronal metabolism and brain aging

PGC-1α 的神经元特异性异构体调节神经元代谢和大脑衰老

阅读:15
作者:Dylan C Souder #, Eric R McGregor #, Josef P Clark, Timothy W Rhoads, Tiaira J Porter, Kevin W Eliceiri, Darcie L Moore, Luigi Puglielli, Rozalyn M Anderson

Abstract

The brain is a high-energy tissue, and although aging is associated with dysfunctional inflammatory and neuron-specific functional pathways, a direct connection to metabolism is not established. Here, we show that isoforms of mitochondrial regulator PGC-1α are driven from distinct brain cell-type specific promotors, repressed with aging, and integral in coordinating metabolism and growth signaling. Transcriptional and proteomic profiles of cortex from male adult, middle age, and advanced age mice reveal an aging metabolic signature linked to PGC-1α. In primary culture, a neuron-exclusive promoter produces the functionally dominant isoform of PGC-1α. Using growth repression as a challenge, we find that PGC-1α is regulated downstream of GSK3β independently across promoters. Broad cellular metabolic consequences of growth inhibition observed in vitro are mirrored in vivo, including activation of PGC-1α directed programs and suppression of aging pathways. These data place PGC-1α centrally in a growth and metabolism network directly relevant to brain aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。