Discussion
Titanium with PTL-Sr coatings promote biomineralization and immunomodulation, which is suitable for orthopedic applications. Further mechanistic exploration and studies using animal models is necessary to enhance the understanding of the clinical applicability of modified titanium.
Methods
In this Study, phase-transited lysozyme (PTL) is deposited onto the surface of titanium (Ti) to construct a functional coating and strontium chloride solution was utilized to produce PTL coatings with Sr2+. The characterization of the strontium-doped PTL coatings (PTL-Sr) was tested by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). A series of cell and animal experiments were conducted to investigate the biological functions of PTL-Sr coatings.
Results
The characterization indicates the successful preparation of PTL-Sr coatings. In vitro cellular experiments have demonstrated that it promotes M2 macrophage polarization and reduces inflammatory mediator production while promoting osteogenic differentiation of bone merrow mesenchymal stem cells (BMSCs). The in vivo subcutaneous implantation model demonstrated its good immunomodulatory and angiogenic properties.