Iron Oxide Nanoparticles Induce Macrophage Secretion of ATP and HMGB1 to Enhance Irradiation-Led Immunogenic Cell Death

氧化铁纳米粒子诱导巨噬细胞分泌 ATP 和 HMGB1,从而增强辐射导致的免疫原性细胞死亡

阅读:22
作者:Shuyue Zhan, Zhengwei Cao, Jianwen Li, Fanghui Chen, Xinning Lai, Wei Yang, Yong Teng, Zibo Li, Weizhong Zhang, Jin Xie

Abstract

ATP (adenosine triphosphate) and HMGB1 (high mobility group box 1 protein) are key players in treatments that induce immunogenic cell death (ICD). However, conventional therapies, including radiotherapy, are often insufficient to induce ICD. In this study, we explore a strategy using nanoparticle-loaded macrophages as a source of ATP and HMGB1 to complement radiation-induced intrinsic and adaptive immune responses. To this end, we tested three inorganic particles, namely, iron oxide nanoparticles (ION), aluminum oxide nanoparticles (AON), and zinc oxide nanoparticles (ZON), in vitro with bone marrow-derived dendritic cells (BMDCs) and then in vivo in syngeneic tumor models. Our results showed that ION was the most effective of the three nanoparticles in promoting the secretion of ATP and HMGB1 from macrophages without negatively affecting macrophage survival. Secretions from ION-loaded macrophages can activate BMDCs. Intratumoral injection of ION-loaded macrophages significantly enhanced tumor infiltration and activation of dendritic cells and cytotoxic T cells. Moreover, exogenous ION macrophages can enhance the efficacy of radiotherapy. In addition, direct injection of ION can also enhance the efficacy of radiotherapy, which is attributed to ION uptake by and stimulation of endogenous macrophages. Instead of directly targeting cancer cells, our strategy targets macrophages and uses them as a secretory source of ATP and HMGB1 to enhance radiation-induced ICD. Our research introduces a new nanoparticle-based immunomodulatory approach that may have applications in radiotherapy and beyond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。