Bio-synthesized TiO2 nanoparticles and the aqueous binder-based anode derived thereof for lithium-ion cells

生物合成的 TiO2 纳米粒子及其衍生的锂离子电池用水性粘合剂基阳极

阅读:3
作者:Akhilash Mohanan Pillai, Sumol V Gopinadh, Peddinti V R L Phanendra, Patteth S Salini, Bibin John, Sujatha SarojiniAmma, Mercy Thelakkattu Devassy

Abstract

Titanium dioxide nanoparticles (TiO2-NPs) are a promising anode material for Lithium-ion batteries (LIBs) due to their good rate capability, low cost, non-toxicity, excellent structural stability, extended cycle life, and low volumetric change (∼4%) during the Li+ insertion/de-insertion process. In the present paper, anatase TiO2-NPs with an average particle size of ~ 12 nm were synthesized via a green synthesis route using Beta vulgaris (Beetroot) extract, and the synthesized TiO2-NPs were evaluated as anode material in LIBs. Furthermore, we employed an aqueous binder (1:1 mixture of carboxy methyl cellulose and styrene butadiene) for electrode processing, making the process cost-effective and environmentally friendly. The results revealed that the Li/TiO2 half-cells delivered an initial discharge capacity of 209.7 mAh g-1 and exhibited superior rate capability (149 mAh g-1 at 20 C) and cycling performances. Even at the 5C rate, the material retained a capacity of 82.2% at the end of 100 cycles. The synthesis route of TiO2-NPs and the aqueous binder-based electrode processing described in the present work are facile, green, and low-cost and are thus practically beneficial for producing low-cost and high-performance anodes for advanced LIBs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。