Influence of Concentration Levels of β-Tricalcium Phosphate on the Physical Properties of a Dental Adhesive

β-磷酸三钙浓度对牙科粘合剂物理性能的影响

阅读:8
作者:Amal S Al-Qahtani, Huda I Tulbah, Mashael Binhasan, Sara Shabib, Khulud A Al-Aali, Mai M Alhamdan, Tariq Abduljabbar

Abstract

Our study assessed the influence of integrating 5% and 10% tricalcium phosphate (β-TCP-Ca3(PO4)2.) nanoparticles into a dental adhesive on the adhesive's bonding. To evaluate the filler nanoparticles, scanning electron microscopy (SEM), Energy Dispersive X-Ray (EDX) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and micro-Raman spectroscopy techniques were used. Shear Bond strength (SBS) testing, degree of conversion (DC) analysis, investigation of the adhesive-dentin interface, and biofilm experiments were conducted. The SEM micrographs revealed non-uniform agglomerates, while the EDX demonstrated the existence of oxygen 'O' (24.2%), phosphorus 'P' (17.4%) and calcium 'Ca' (60.1%) in the β-TCP nanoparticles. The FTIR and micro-Raman spectra indicated characteristic bands for β-TCP containing materials. The 10 wt.% β-TCP adhesive presented the highest SBS values (NTC-10 wt.% β-TCP: 33.55 ± 3.73 MPa, TC-10 wt.% β-TCP: 30.50 ± 3.25 MPa), followed by the 5 wt.% β-TCP adhesive (NTC-5 wt.% β-TCP: 32.37 ± 3.10 MPa, TC-5 wt.% β-TCP: 27.75 ± 3.15 MPa). Most of the detected failures after bond strength testing were adhesive in nature. The β-TCP adhesives demonstrated suitable dentin interaction by forming a hybrid layer (with few or no gaps) and resin tags. The β-TCP adhesives (10 wt.%) revealed lower DC values compared to control. The incorporation of 5 and 10 wt.% concentrations of β-TCP particles resulted in an increase in SBS values. A linear decline in DC values was witnessed when the nanoparticle concentration was increased. Further research focusing on exploring the influence of higher filler concentrations on adhesive's properties is recommended.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。