BCR::ABL1-induced mitochondrial morphological alterations as a potential clinical biomarker in chronic myeloid leukemia

BCR::ABL1 诱导的线粒体形态改变可作为慢性粒细胞白血病的潜在临床生物标志物

阅读:25
作者:Kohjin Suzuki, Naoki Watanabe, Satoru Torii, Satoko Arakawa, Kiyosumi Ochi, Shun Tsuchiya, Kazuhiro Yamada, Yoko Kawamura, Sadao Ota, Norio Komatsu, Shigeomi Shimizu, Miki Ando, Tomoiku Takaku

Abstract

The BCR::ABL1 oncogene plays a crucial role in the development of chronic myeloid leukemia (CML). Previous studies have investigated the involvement of mitochondrial dynamics in various cancers, revealing potential therapeutic strategies. However, the impact of BCR::ABL1 on mitochondrial dynamics remains unclear. In this study, we demonstrated that BCR::ABL1 is sufficient to induce excessive mitochondrial fragmentation by activating dynamin-related protein (DRP)1 through the mitogen-activated protein kinase (MAPK) pathway. Leukocytes obtained from patients with CML and the BCR::ABL1-positive cell lines exhibited increased mitochondrial fragmentation compared to leukocytes obtained from healthy donors and BCR::ABL1-negative cells. Furthermore, the analysis of BCR::ABL1-transduced cells showed increased phosphorylation of DRP1 at serine 616 and extracellular signal-regulated kinase (ERK) 1/2. Moreover, the inhibition of DRP1 and upstream mitogen-activated extracellular signal-regulated kinase (MEK) 1/2 suppressed mitochondrial fragmentation. Strikingly, DRP1 inhibition effectively reduced the viability of BCR::ABL1-positive cells and induced necrotic cell death. Additionally, a label-free artificial intelligence-driven flow cytometry successfully identified not only the BCR::ABL1-transduced cells but also peripheral leukocytes from CML patients by assessing mitochondrial morphological alterations. These findings suggested the crucial role of BCR::ABL1-induced mitochondrial fragmentation in driving BCR::ABL1-positive cell proliferation, and the potential use of mitochondrial morphological alterations as a clinical biomarker for the label-free detection of CML cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。