Pan-cancer Genomic Analysis of AXL Mutations Reveals a Novel, Recurrent, Functionally Activating AXL W451C Alteration Specific to Myxofibrosarcoma

AXL 突变的泛癌基因组分析揭示了一种新型、复发性、功能激活的 AXL W451C 变异,该变异特异于粘液纤维肉瘤

阅读:2
作者:Erik A Williams, Isabella Vegas, Fardous F El-Senduny, Jessica Zhang, Douglas A Mata, Matthew C Hiemenz, Sarah R Hughes, Brianna C Sa, Garrett P Kraft, Nicole Gorbatov, Kathleen Foley-Peres, Edward Z Sanchez, Clara Milikowski, Kevin Jon Williams, Jeffrey S Ross, Razelle Kurzrock, Elizabeth A Montgom

Abstract

Myxofibrosarcoma (MFS) is a common soft tissue sarcoma of the elderly that typically shows low tumor mutational burden, with mutations in TP53 and in genes associated with cell cycle checkpoints ( RB1 , CDKN2A ). Unfortunately, no alterations or markers specific to MFS have been identified and, as a consequence, there are no effective targeted therapies. The receptor tyrosine kinase AXL, which drives cellular proliferation, is targetable by new antibody-based therapeutics. Expression of AXL messenger RNA is elevated in a variety of sarcoma types, with the highest levels reported in MFS, but the pathogenic significance of this finding remains unknown. To assess a role for AXL abnormalities in MFS, we undertook a search for AXL genomic alterations in a comprehensive genomic profiling database of 463,546 unique tumors (including 19,879 sarcomas, of which 315 were MFS) interrogated by targeted next-generation DNA and/or RNA sequencing. Notably, the only genomic alterations recurrent in a specific sarcoma subtype were AXL W451C (n = 8) and AXL W450C (n = 2) mutations. The tumors involved predominantly older adults (age: 44 to 81 [median: 72] y) and histologically showed epithelioid and spindle-shaped cells in a variably myxoid stroma, with 6 cases diagnosed as MFS, 3 as undifferentiated pleomorphic sarcoma (UPS), and 1 as low-grade sarcoma. The AXL W451C mutation was not identified in any non-sarcoma malignancy. A review of publicly available data sets revealed a single AXL W451C-mutant case of UPS that clustered with MFS/UPS by methylation profiling. Functional studies revealed a novel activation mechanism: the W451C mutation causes abnormal unregulated dimerization of the AXL receptor tyrosine kinase through disulfide bond formation between pairs of mutant proteins expressing ectopic cysteine residues. This dimerization triggers AXL autophosphorylation and activation of downstream ERK signaling. We further report sarcomas of diverse histologic subtypes with AXL gene amplifications, with the highest frequency of amplification identified in MFS cases without the W451C mutation. In summary, the activating AXL W451C mutation appears highly specific to MFS, with a novel mechanism to drive unregulated signaling. Moreover, AXL gene amplifications and messenger RNA overexpression are far more frequent in MFS than in other sarcoma subtypes. We conclude that these aberrations in AXL are distinct features of MFS and may aid diagnosis, as well as the selection of available targeted therapies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。