DDIT3 Directs a Dual Mechanism to Balance Glycolysis and Oxidative Phosphorylation during Glutamine Deprivation

DDIT3 指导双重机制在谷氨酰胺缺乏期间平衡糖酵解和氧化磷酸化

阅读:9
作者:Mingyue Li, Rick Francis Thorne, Ronghua Shi, Xu Dong Zhang, Jingmin Li, Jingtong Li, Qingyuan Zhang, Mian Wu, Lianxin Liu

Abstract

Extracellular glutamine represents an important energy source for many cancer cells and its metabolism is intimately involved in maintaining redox homeostasis. The heightened metabolic activity within tumor tissues can result in glutamine deficiency, necessitating metabolic reprogramming responses. Here, dual mechanisms involving the stress-responsive transcription factor DDIT3 (DNA damage induced transcript 3) that establishes an interrelationship between glycolysis and mitochondrial respiration are revealed. DDIT3 is induced during glutamine deprivation to promote glycolysis and adenosine triphosphate production via suppression of the negative glycolytic regulator TIGAR. In concert, a proportion of the DDIT3 pool translocates to the mitochondria and suppresses oxidative phosphorylation through LONP1-mediated down-regulation of COQ9 and COX4. This in turn dampens the sustained levels of reactive oxygen species that follow glutamine withdrawal. Together these mechanisms constitute an adaptive survival mechanism permitting tumor cells to survive metabolic stress induced by glutamine starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。