Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella thermoacetica and Moorella thermoautotrophica

穆尔氏菌属所有物种的基因组比较以及热乙酸穆尔氏菌和热自养穆尔氏菌的现状

阅读:18
作者:Stephanie Redl, Anja Poehlein, Carola Esser, Frank R Bengelsdorf, Torbjørn Ø Jensen, Christian B Jendresen, Brian J Tindall, Rolf Daniel, Peter Dürre, Alex T Nielsen

Abstract

Fermentation of gases provides a promising opportunity for the production of biochemicals from renewable resources, which has resulted in a growing interest in acetogenic bacteria. Thermophilic organisms provide potential advantages for the fermentation of, e.g., syngas into for example volatile compounds, and the thermophiles Moorella thermoacetica and Moorella thermoautotrophica have become model organisms of acetogenic metabolism. The justification for the recognition of the closely related species M. thermoautotrophica has, however, recently been disputed. In order to expand knowledge on the genus, we have here genome sequenced a total of 12 different M. thermoacetica and M. thermoautotrophica strains. From the sequencing results, it became clear that M. thermoautotrophica DSM 1974T consists of at least two different strains. Two different strains were isolated in Lyngby and Ulm from a DSM 1974T culture obtained from the DSMZ (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Brunswick, Germany). Phylogenetic analysis revealed a close relationship between all the sequenced genomes, suggesting that the two strains detected in the type strain of the species M. thermoautotrophica could not be distinguished at the species level from M. thermoacetica. Despite genetic similarities, differences in genomic features were observed between the strains. Differences in compounds that can serve as carbon and energy sources for selected strains were also identified. On the contrary, strain DSM 21394, currently still named M. thermoacetica, obviously represents a new Moorella species. In addition, based on genome analysis and comparison M. glycerini NMP, M. stamsii DSM 26217T, and M. perchloratireducens An10 cannot be distinguished at the species level. Thus, this comprehensive analysis provides a significantly increased knowledge of the genetic diversity of Moorella strains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。