A cardiac transcriptional enhancer is repurposed during regeneration to activate an anti-proliferative program

心脏转录增强子在再生过程中被重新利用来激活抗增殖程序

阅读:2
作者:Anupama Rao, Andrew Russell, Jose Segura-Bermudez, Charles Franz, Rejenae Dockery, Anton Blatnik, Jacob Panten, Mateo Zevallos, Carson McNulty, Maciej Pietrzak, Joseph Aaron Goldman

Abstract

Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN (the runx1 enhancer) that, during regeneration, regulates the expression of the nearby runx1 gene. We show that runx1 mRNA is reduced with deletion of REN (ΔREN), and cardiomyocyte proliferation is enhanced in ΔREN mutants only during regeneration. Interestingly, in uninjured hearts, ΔREN mutants have reduced expression of adamts1, a nearby gene that encodes a Collagen protease. This results in excess Collagen within cardiac valves of uninjured hearts. The ΔREN Collagen phenotype is rescued by an allele with Δrunx1 mutations, suggesting that in uninjured hearts REN regulates adamts1 independently of runx1. Taken together, this suggests that REN is rewired from adamts1 in uninjured hearts to stimulate runx1 transcription during regeneration. Our data point to a previously unappreciated mechanism for gene regulation during zebrafish heart regeneration. We report that an enhancer is rewired from expression in a distal cardiac domain to activate a different gene in regenerating tissue.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。