PRDX4 mitigates diabetic retinopathy by inhibiting reactive gliosis, apoptosis, ER stress, oxidative stress, and mitochondrial dysfunction in Müller cells

PRDX4 通过抑制 Müller 细胞中的反应性神经胶质增生、细胞凋亡、内质网应激、氧化应激和线粒体功能障碍来减轻糖尿病视网膜病变

阅读:3
作者:Yue Huang, Yuting Zhang, Yuan Liu, Yinan Jin, Hongwei Yang

Abstract

Diabetic retinopathy (DR) is a neurovascular complication of diabetes. As a crucial player in the retinal physiology, Müller cells are affected in DR, impairments of Müller cell function lead to retinal malfunctions. Therefore, searching for approaches to mitigate diabetes-induced injury in Müller cells is imperative for delaying DR. Peroxiredoxin 4 (PRDX4), an important endoplasmic reticulum (ER)-resident antioxidant, was explored in this study for its potential protective role against DR. Streptozotocin-induced mouse model of diabetes and high glucose (HG)-induced Müller cells were utilized to assess the impact of PRDX4. Compared with WT mice, PRDX4 knockout exacerbated retinal neurodegeneration, reactive gliosis, cell apoptosis, ER stress, oxidative stress, and mitochondrial dysfunction in diabetic retinas. Knockdown of PRDX4 aggravated HG-induced reactive gliosis, apoptosis, ER stress, oxidative stress, and mitochondrial dysfunction in Müller cells. Conversely, PRDX4 overexpression in Müller cells protected against HG-induced cell damage. Mechanistically, PRDX4 promoted the degradation of dipeptidyl peptidase-4, which is associated with DR in type 1 diabetics, thereby alleviating HG-stimulated Müller cell abnormalities. Our study indicated that PRDX4 is a crucial protective regulator in DR progression via destabilization of dipeptidyl peptidase-4 protein and suggested that enhancement of PRDX4 level may represent a promising approach for treating DR.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。