Aβ -induced excessive mitochondrial fission drives type H blood vessels injury to aggravate bone loss in APP/PS1 mice with Alzheimer's diseases

Aβ 诱导的线粒体过度裂变导致 H 型血管损伤加剧阿尔茨海默病 APP/PS1 小鼠的骨质流失

阅读:3
作者:Weidong Zhang, Fan Ding, Xing Rong, Qinghua Ren, Tomoka Hasegawa, Hongrui Liu, Minqi Li

Abstract

Alzheimer's diseases (AD) patients suffer from more serious bone loss than cognitively normal subjects at the same age. Type H blood vessels were tightly associated with bone homeostasis. However, few studies have concentrated on bone vascular alteration and its role in AD-related bone loss. In this study, APP/PS1 mice (4- and 8-month-old) and age-matched wild-type mice were used to assess the bone vascular alteration and its role in AD-related bone loss. Transmission electron microscopy, immunofluorescence staining and iGPS 1.0 software database were utilized to investigate the molecular mechanism. Mitochondrial division inhibitor (Mdivi-1) and GSK-3β inhibitor (LiCl) were used to rescue type H blood vessels injury and verify the molecular mechanism. Our results revealed that APP/PS1 mice exhibited more serious bone blood vessels injury and bone loss during ageing. The bone blood vessel injury, especially in type H blood vessels, was accompanied by impaired vascularized osteogenesis in APP/PS1 mice. Further exploration indicated that beta-amyloid (Aβ) promoted the apoptosis of vascular endothelial cells (ECs) and resulted in type H blood vessels injury. Mechanistically, Aβ-induced excessive mitochondrial fission was found to be essential for the apoptosis of ECs. GSK-3β was identified as a key regulatory target of Aβ-induced excessive mitochondrial fission and bone loss. The findings delineated that Aβ-induced excessive mitochondrial fission drives type H blood vessels injury, leading to aggravate bone loss in APP/PS1 mice and GSK-3β inhibitor emerges as a potential therapeutic strategy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。