Sustained hypoxia but not intermittent hypoxia induces HIF-1α transcriptional response in human aortic endothelial cells

持续性缺氧而非间歇性缺氧可诱导人主动脉内皮细胞 HIF-1α 转录反应

阅读:2
作者:Rengul Cetin-Atalay, Angelo Y Meliton, Yufeng Tian, Kaitlyn A Sun, Parker S Woods, Kun Woo D Shin, Takugo Cho, Alex Gileles-Hillel, Robert B Hamanaka, Gökhan M Mutlu

Abstract

Obstructive sleep apnea (OSA) is characterized by intermittent hypoxic environments at the cellular level and is an independent risk factor for the development of cardiovascular disease. Endothelial cell (EC) dysfunction precedes the development of cardiovascular disease; however, the mechanisms by which ECs respond to these intermittent hypoxic events are poorly understood. To better understand EC responses to hypoxia, we examined the effects of sustained hypoxia (SH) and intermittent hypoxia (IH) on the activation of HIF-1α in ECs. While SH stabilized HIF-1α and led to its nuclear localization, IH did not activate HIF-1α and the expression of its target genes. Using RNA-sequencing, we evaluated transcriptional responses of ECs to hypoxia. SH induced the expression of HIF-1α and hypoxia response genes, while IH affected cell-cycle regulation genes. A cytoscape protein-protein interaction network for EC response to hypoxia was created with differentially expressed genes. The network comprises cell-cycle regulation, inflammatory signaling via NF-κB and response to VEGF stimulus subnetworks on which SH and IH had distinct activities. As OSA is associated with elevated catecholamines, we investigated the effect of epinephrine on the EC response to SH and IH. Transcriptomic responses under IH and epinephrine revealed protein-protein interaction networks emphasizing distinct subnetworks, including cytokine-mediated TNFα signaling via NF-κB, Wnt/LRP/DKK signaling and cell cycle regulation. This study reveals differential transcriptomic responses under SH and IH characterised by HIF-1α transcriptional response induced only by SH, but not by IH. The study also features the potential molecular events that may occur at the vascular level in OSA.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。