Effect of electroacupuncture on global cerebral ischemia-reperfusion injury in rats: A urine proteome analysis

电针对大鼠全脑缺血再灌注损伤的影响:尿液蛋白质组分析

阅读:2
作者:Xiao Zhang, Yuting Dai, Fuguo Ma, Yuan Ma, Jiajia Wang, Xiaoxia Li, Weiwei Qin

Background

This study aimed to investigate dynamic urinary proteome changes of electroacupuncture (EP) on cerebral ischemia-reperfusion (CI/R) injured rats and to explore the therapeutic biological mechanisms of EP.

Conclusion

Our results indicate that the EP could alleviate cerebral damage induced by ischemia-reperfusion through an anti-inflammatory and metabolism regulation mechanism. The urinary proteome might reflect the pathophysiological changes in EP pretreatment in the treatment and prevention of CI/R injury.

Methods

First, changed urinary proteins were found in EP stimulation in healthy rats. Then, we used a CI/R injury rat model induced by Pulsinelli's four-vessel occlusion (4-VO) method to explore the function of EP on urinary proteome in CI/R injury. Urine samples were collected for proteome analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis.

Results

In total, 384 proteins were identified, among which 47 proteins (23 upregulated, 24 downregulated) were differentially expressed with 0.6-log FC and p < .05. Gene ontology analysis revealed that the cell redox homeostasis, acute-phase response, response to lipopolysaccharide, and cellular response to glucocorticoid stimulus were significantly enriched. The partially biologically connected differential proteins were found by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in the EP group. With the CI/R rat model, 80 proteins (27 upregulated, 53 downregulated) were significantly changed in the CI/R rats compared to the controls. Among these differentially expressed proteins (DEPs), 23 proteins (17 upregulated, six downregulated) showed significant changes after EP treatment (0.6-log FC change, p < .05). The main related biological processes were aging, immune response, acute-phase response, liver regeneration, protein catabolic process, and response to oxidative stress. Many metabolic pathways were enriched by KEGG analysis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。