Heme Oxygenase 1-Targeted Hybrid Nanoparticle for Chemo- and Immuno-Combination Therapy in Acute Myelogenous Leukemia

血红素加氧酶 1 靶向混合纳米颗粒用于急性髓性白血病的化学和免疫联合治疗

阅读:2
作者:Seok-Beom Yong, Jaehyun Kim, Jee Young Chung, Sehee Ra, Seong Su Kim, Yong-Hee Kim

Abstract

Acute myelogenous leukemia (AML) is a fatal blood cancer with high patient mortality. Daunorubicin and cytarabine are first-line chemotherapy for AML, with bone marrow transplantation in most cases. Recently, cancer immunotherapy has been challenged in AML and leukemia-niche myeloid cells are promising targets for the AML immunotherapy. Heme oxygenase 1 (HO1) is an antioxidative and cytoprotective enzyme inducing chemo-resistant AML and has been focused as an immune checkpoint molecule in tumor microenvironments. Herein, lipid-polymer hybrid nanoparticle (hNP) is loaded with tin mesoporphyrin (SnMP), a HO1-inhibitor, and non-covalently modified with an engineered antibody for leukemic cell-targeted delivery. HO1-inhibiting T-hNP (T-hNP/SnMP) enhances chemo-sensitivity in human leukemia cells. In a human AML-bearing orthotopic mouse model, intravenously injected T-hNP not only actively targets to human leukemia cells but passively targets to CD11b+ myeloid cells in a bone marrow niche. The T-hNP/SnMP enhances the chemo-therapeutic effect of daunorubicin and boosts immune response by reprogramming bone marrow myeloid cells resulting from the recruitment of the monocyte-lineage and induction of inflammatory genes. The ex vivo study demonstrates an enhanced immune response of HO1-inhibited bone marrow CD11b+ myeloid cells against apoptotic leukemia cells. Collectively, HO1-inhibiting dual cell-targeted T-hNP/SnMP has a strong potential as a novel therapeutic in AML.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。