Myeloperoxidase produces nitrating oxidants in vivo

髓过氧化物酶在体内产生硝化氧化剂

阅读:2
作者:Joseph P Gaut, Jaeman Byun, Hung D Tran, Wendy M Lauber, James A Carroll, Richard S Hotchkiss, Abderrazzaq Belaaouaj, Jay W Heinecke

Abstract

Despite intense interest in pathways that generate reactive nitrogen species, the physiologically relevant mechanisms for inflammatory tissue injury remain poorly understood. One possible mediator is myeloperoxidase, a major constituent of neutrophils, monocytes, and some populations of macrophages. The enzyme uses hydrogen peroxide and nitrite to generate 3-nitrotyrosine in vitro. To determine whether myeloperoxidase produces nitrating intermediates in vivo, we used isotope dilution gas chromatography/mass spectrometry to quantify 3-nitrotyrosine in two models of peritoneal inflammation: mice infected with Klebsiella pneumoniae and mice subjected to cecal ligation and puncture. Both models developed an intense neutrophil inflammatory response, and the inflammatory fluid contained markedly elevated levels of 3-chlorotyrosine, a marker of myeloperoxidase action. In striking contrast, 3-nitrotyrosine levels rose only in the mice infected with K. pneumoniae. Levels of total nitrite and nitrate were 20-fold higher in mice injected with K. pneumoniae than in mice subjected to cecal ligation and puncture. Levels of 3-nitrotyrosine failed to increase in mice infected with K. pneumoniae that lacked functional myeloperoxidase. Our observations provide strong evidence that myeloperoxidase generates reactive nitrogen species in vivo and that it operates in this fashion only when nitrite and nitrate become available. This article was published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。