Conclusions
Furthermore, DPSC-exosomes show an ability to promote autophagy in chondrocytes through mTOR inhibition, in addition to reducing the mTOR luciferase activity. The ability of DPSC-exosomes to partially regulate autophagy was blocked upon inhibition of miR-31. In brief, DPSC-exosomes have a chondroprotective role in a mouse osteoarthritis model. The underlying mechanism is possibly related to miR-31-mediated suppression of the mTOR-autophagy pathway.
Material and methods
In this in vitro and in vivo study, we studied the effects and mechanisms of dental pulp stem cell-derived exosomes (DPSC-exosomes) on osteoarthritis in a mouse model.
Methods
In this in vitro and in vivo study, we studied the effects and mechanisms of dental pulp stem cell-derived exosomes (DPSC-exosomes) on osteoarthritis in a mouse model.
Results
The study findings showed that a dental pulp stem cell could generate typical characteristic exosomes. The injection of DPSC-exosomes ameliorated destruction of cartilage, promoted matrix synthesis, inhibited cell apoptosis, and decreased the expression of catabolic factors. However, this effect was shown to be almost eliminated when miR-31 antagomir was injected. Conclusions: Furthermore, DPSC-exosomes show an ability to promote autophagy in chondrocytes through mTOR inhibition, in addition to reducing the mTOR luciferase activity. The ability of DPSC-exosomes to partially regulate autophagy was blocked upon inhibition of miR-31. In brief, DPSC-exosomes have a chondroprotective role in a mouse osteoarthritis model. The underlying mechanism is possibly related to miR-31-mediated suppression of the mTOR-autophagy pathway.