High-throughput protein modification quantitation analysis using intact protein MRM and its application on hENGase inhibitor screening

完整蛋白质MRM高通量蛋白质修饰定量分析及其在hENGase抑制剂筛选中的应用

阅读:19
作者:Dingyin Tao, Miao Xu, Atena Farkhondeh, Andrew P Burns, Steven Rodems, Matthew Might, Wei Zheng, Christopher A LeClair

Abstract

Proteins are widely used as drug targets, enzyme substrates, and biomarkers for numerous diseases. The emerging demand for proteins quantitation has been increasing in multiple fields. Currently, there is still a big gap for high-throughput protein quantitation at intact protein level using label-free method. Here we choose ribonuclease B (RNB) as a model, which is the substrate for human endo-β-N-acetylglucosaminidase (hENGase), a promising drug target for the treatment of N-Glycanase deficiency. Intact proteinlevel multiple reaction monitoring (MRM) methods were initally developed and optimized to quantify RNB and deglycosylated RNB (RNB-deg), with the S/N ratio improved by nearly 20-fold compared to the traditional full MS scan methods. To further increase the throughput making it possible for hENGase inhibitors screen, the protein MRM methods were introduced to the RapidFire-MS/MS system, achieving at least 12-fold throughput improvement. This assay was further optimized into 384-well plate format for compound screening with S/B ratio >37-fold and Z' factor >0.7 that is suitable for high-throughput screening of compound collections with a speed of 2 h per 384-well plate and an ability to screen over 3000 compounds per day at a single concentration dose. This 384-well plate based automated SPE-MS/MS assay is efficient and robust for compound screening and the assay format has a wide applicability to protein targets for other disease models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。