Identification and functional analysis of genes mediating osteoclast-driven progression of osteoporosis

介导破骨细胞驱动的骨质疏松症进展的基因的鉴定和功能分析

阅读:2
作者:Qu Xu, Gangning Feng, Zhihai Zhang, Jiangbo Yan, Zhiqun Tang, Rui Wang, Penggang Ma, Ye Ma, Guang Zhu, Qunhua Jin

Conclusion

CTRL, ARHGEF5, PPAP2C, VSIG2, and PBLD show high potential as molecular targets for basic and clinical research in osteoclast-mediated OP.

Discussion

Currently, there are no studies on the effects of these five genes on osteoclast differentiation. Therefore, it is meaningful to design in vivo and in vitro perturbation experiments to observe the impact of each gene on osteoclast differentiation and OP progression. Conclusion: CTRL, ARHGEF5, PPAP2C, VSIG2, and PBLD show high potential as molecular targets for basic and clinical research in osteoclast-mediated OP.

Methods

Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed on the OP patient datasets from the GEO database. The

Objective

The pathological mechanism of osteoporosis (OP) involves increased bone resorption mediated by osteoclasts and decreased bone formation mediated by osteoblasts, leading to an imbalance in bone homeostasis. Identifying key molecules in osteoclast-mediated OP progression is crucial for the prevention and treatment of OP.

Results

CTRL, ARHGEF5, PPAP2C, VSIG2, and PBLD were identified as key genes. These genes exhibited strong disease relevance (AUC > 0.9). Functional enrichment results also indicated their close association with OP and osteoclast differentiation. In vitro differential expression validation showed that during osteoclast differentiation, CTRL was downregulated, while ARHGEF5, PPAP2C, VSIG2, and PBLD were upregulated, with all differences being statistically significant (P < 0.05).

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。