Heat shock protein 70 selectively mediates the degradation of cytosolic PrPs and restores the cytosolic PrP-induced cytotoxicity via a molecular interaction

热休克蛋白 70 选择性地介导细胞浆 PrP 的降解,并通过分子相互作用恢复细胞浆 PrP 诱导的细胞毒性

阅读:2
作者:Jin Zhang, Ke Wang, Yan Guo, Qi Shi, Chan Tian, Cao Chen, Chen Gao, Bao-Yun Zhang, Xiao-Ping Dong

Background

Although the aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases, there is evidence in cultured cells and transgenic mice that neuronal death can be triggered by the accumulation of cytosolic PrPs, leading to the hypothesis that the accumulation of PrPs in the cytosol of neurons may be a primary neurotoxic culprit. Hsp70, a molecular chaperone involved in protein folding/refolding and degradation in the cytoplasm, has a protective effect in some models of neurodegenerative diseases, e.g., Alzheimer's and Parkinson's diseases, but its role in prion diseases remains unclear.

Conclusion

These data imply that Hsp70 has central role in the metabolism of cytosolic PrPs.

Results

To study the role of Hsp70 in prion diseases, we used immunoprecipitation to first identify a molecular interaction between Hsp70 and PrPs. Using immunofluorescence, we found that Hsp70 colocalized with cytosolic PrPs in HEK293 cells transiently transfected with plasmids for Cyto-PrP and PG14-PrP but not with wild-type PG5-PrP or endoplasmic reticulum (ER)-retained PrPs (3AV-PrP and ER-PrP). Using western blot analysis and apoptosis assays of cultured cells, we found that the overexpression of Hsp70 by transfection or the activation of Hsp70 by geldanamycin selectively mediated the degradation of cytosolic PrPs and restored cytosolic PrP-induced cytotoxicity. Moreover, we found that Hsp70 levels were up-regulated in cells expressing Cyto-PrP and in hamster brains infected with the scrapie agent 263K.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。