ACKR3 agonism induces heterodimerization with chemokine receptor CXCR4 and attenuates platelet function

ACKR3 激动剂诱导与趋化因子受体 CXCR4 的异二聚化并减弱血小板功能

阅读:2
作者:Valerie Dicenta-Baunach, Zoi Laspa, David Schaale, Manuel Sigle, Alp Bayrak, Tatsiana Castor, Thanigaimalai Pillaiyar, Stefan Laufer, Meinrad Paul Gawaz, Anne-Katrin Rohlfing

Background

Platelet receptors ACKR3 and CXCR4 play a crucial role in a variety of cardiovascular diseases. Like most chemokine receptors, CXCR4 is a G protein coupled receptor that induces platelet activation. In contrast, the atypical chemokine receptor 3 (ACKR3) lacks the ability to activate heterotrimeric G proteins and its activation leads to platelet inhibition and attenuates thrombus formation. In nucleated cells, heterodimerization of ACKR3 with CXCR4 regulates CXCL12-dependent signalling. The

Conclusion

Our results reveal that the formation of platelet ACKR3/CXCR4 heterodimers is dependent on ACKR3 rather than CXCR4. Furthermore, ACKR3 agonism induced heterodimerization is associated with mitigating CXCL12/CXCR4-dependent platelet activation possibly by modulating CXCR4-dependent G protein signalling. Our results indicate possible ACKR3 agonist functions and reinforce the potential therapeutic applications of ACKR3 agonists.

Results

Using a proximity ligation assay (PLA, Duolink®) to screen for CXCR4/ACKR3 heterodimerization inducing compounds, we found that ACKR3 agonism but not conventional platelet agonists or endogen ligands lead to heterodimer formation. To further characterize the formation of ACKR3/CXCR4 heterodimers, we studied the CXCL12-dependent platelet activation via CXCR4. Both, CXCL12-dependent platelet aggregation and collagen-dependent ex vivo thrombus formation were significantly downregulated by ACKR3 agonism. Moreover, platelet intracellular calcium and Akt signalling were increased by CXCL12 and again suppressed by ACKR3-specific agonists. Previously, CXCL12 was shown to decrease platelet cAMP levels via CXCR4. Treatment with a specific ACKR3 agonist counteracted this CXCL12/CXCR4-dependent cAMP decrease.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。