myCAF-derived exosomal PWAR6 accelerates CRC liver metastasis via altering glutamine availability and NK cell function in the tumor microenvironment

myCAF衍生的外泌体PWAR6通过改变肿瘤微环境中的谷氨酰胺可用性和NK细胞功能来加速CRC肝转移

阅读:2
作者:Hongsheng Fang # ,Weixing Dai # ,Ruiqi Gu # ,Yanbo Zhang # ,Jin Li ,Wenqin Luo ,Shanyou Tong ,Lingyu Han ,Yichao Wang ,Chengyao Jiang ,Xue Wang ,Renjie Wang ,Guoxiang Cai

Abstract

Background: Liver metastasis from colorectal cancer (CRC) is a major clinical challenge that severely affects patient survival. myofibroblastic cancer-associated fibroblasts (myCAFs) are a major component of the CRC tumor microenvironment, where they contribute to tumor progression and metastasis through exosomes. Methods: Single-cell analysis highlighted a notable increase in myCAFs in colorectal cancer liver metastases (CRLM). Exosomal sequencing identified PWAR6 as the most significantly elevated lncRNA in these metastatic tissues. In vivo and in vitro assays confirmed PWAR6's roles in CRC cell stemness, migration, and glutamine uptake. RNA pulldown, RIP, and Co-IP assays investigated the molecular mechanisms of the PWAR6/NRF2/SLC38A2 signaling axis in CRC progression, flow cytometry was used to assess NK cell activity and cytotoxicity. Results: Clinically, higher PWAR6 expression levels are strongly associated with increased 68Ga FAPI-PET/CT SUVmax values, particularly in CRLM patients, where expression significantly exceeds that of non-LM cases and normal colon tissues. Regression analysis and survival data further support PWAR6 as a negative prognostic marker, with elevated levels correlating with worse patient outcomes. Mechanistically, PWAR6 promotes immune evasion by inhibiting NRF2 degradation through competitive binding with Keap1, thereby upregulating SLC38A2 expression, which enhances glutamine uptake in CRC cells and depletes glutamine availability for NK cells. Conclusion: myCAFs derived exosomes PWAR6 represents a pivotal marker for CRC liver metastasis, and its targeted inhibition with ASO-PWAR6, in combination with FAPI treatment, effectively curtails metastasis in preclinical models, offering promising therapeutic potential for clinical management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。