The Borrelia burgdorferi CheY3 response regulator is essential for chemotaxis and completion of its natural infection cycle

伯氏疏螺旋体 CheY3 反应调节剂对于趋化性和完成其自然感染周期至关重要

阅读:2
作者:Elizabeth A Novak, Padmapriya Sekar, Hui Xu, Ki Hwan Moon, Akarsh Manne, R Mark Wooten, Md A Motaleb

Abstract

Borrelia burgdorferi possesses a sophisticated and complex chemotaxis system, but how the organism utilizes this system in its natural enzootic life cycle is poorly understood. Of the three CheY chemotaxis response regulators in B. burgdorferi, we found that only deletion of cheY3 resulted in an altered motility and significantly reduced chemotaxis phenotype. Although ΔcheY3 maintained normal densities in unfed ticks, their numbers were significantly reduced in fed ticks compared with the parental or cheY3-complemented spirochetes. Importantly, mice fed upon by the ΔcheY3-infected ticks did not develop a persistent infection. Intravital confocal microscopy analyses discovered that the ΔcheY3 spirochetes were motile within skin, but appeared unable to reverse direction and perform the characteristic backward-forward motility displayed by the parental strain. Subsequently, the ΔcheY3 became 'trapped' in the skin matrix within days of inoculation, were cleared from the skin needle-inoculation site within 96 h post-injection and did not disseminate to distant tissues. Interestingly, although ΔcheY3 cells were cleared within 96 h post-injection, this attenuated infection elicited significant levels of B. burgdorferi-specific IgM and IgG. Taken together, these data demonstrate that cheY3-mediated chemotaxis is crucial for motility, dissemination and viability of the spirochete both within and between mice and ticks.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。