Multi-Characteristic Opsin Therapy to Functionalize Retina, Attenuate Retinal Degeneration, and Restore Vision in Mouse Models of Retinitis Pigmentosa

多特征视蛋白疗法可使视网膜功能化、减轻视网膜变性并恢复视网膜色素变性小鼠模型的视力

阅读:10
作者:Subrata Batabyal, Sanghoon Kim, Michael Carlson, Darryl Narcisse, Kissaou Tchedre, Adnan Dibas, Najam A Sharif, Samarendra Mohanty

Conclusions

Intravitreal MCO-010 was well tolerated in rd1 and rd10 mice models of RP, and it appeared to attenuate retinal photoreceptor degeneration based on retinal structure and functional outcome measures. Translational relevance: As reported here, optogenetic treatment of the inner retina attenuates further retinal degeneration in addition to photosensitizing higher order neurons, and this disease-modifying aspect should be evaluated in optogenetic clinical trials.

Methods

Various retinal measures of MCO-010 transduction and electrophysiological, behavioral, and other routine blood analyses were performed in the rd1 and/or rd10 mice after intravitreal injection of 1 µL of MCO-010 or AAV2 vehicle. Functional tests included electroretinogram, visually evoked potential, and behavior assay (optomotor and water maze). Retinal thickness, intraocular pressure, and plasma cytokine levels were also determined.

Purpose

Retinal degeneration 1 and 10 (rd1 and rd10) mice are useful animal models of retinitis pigmentosa (RP) with rapidly and slowly progressive pathologies, respectively. Our study aims were to determine the effect of adeno-associated viral vector 2 (AAV2)-delivered multi-characteristic opsin (MCO-010; under the control of a metabotropic glutamate receptor-6 promoter enhancer) on the morphological and functional characteristics of vision in both rd1 and rd10 mice.

Results

Following intravitreal MCO-010 injection, approximately 80% of bipolar cells were transduced in the retina, and no alterations in retinal thickness were observed at 4 months post-injection. However, retinal thickness significantly decreased in control mice. MCO-010 treatment increased head movements and induced faster navigation of mice to the platform in a water-maze test. The MCO-010 gene therapy helped preserve visually evoked electrical response in the retina and visual cortex. No ocular toxicity, immunotoxicity, or phototoxicity was observed in the MCO-010-treated mice, even under chronic intense light conditions. Conclusions: Intravitreal MCO-010 was well tolerated in rd1 and rd10 mice models of RP, and it appeared to attenuate retinal photoreceptor degeneration based on retinal structure and functional outcome measures. Translational relevance: As reported here, optogenetic treatment of the inner retina attenuates further retinal degeneration in addition to photosensitizing higher order neurons, and this disease-modifying aspect should be evaluated in optogenetic clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。