Oxidative stress-driven enhanced iron production and scavenging through Ferroportin reorientation worsens anemia in antimony-resistant Leishmania donovani infection

氧化应激驱动的铁生成和铁清除增强(通过铁转运蛋白重新定向)加剧了耐锑杜氏利什曼原虫感染的贫血

阅读:29
作者:Souradeepa Ghosh, Krishna Vamshi Chigicherla, Shirin Dasgupta, Yasuyuki Goto, Budhaditya Mukherjee

Abstract

Despite the withdrawal of pentavalent-antimonials in treating Visceral leishmaniasis from India, recent clinical isolates of Leishmania donovani (LD) exhibit unresponsiveness towards pentavalent-antimony (LD-R). This antimony-unresponsiveness points towards a genetic adaptation that underpins LD-R's evolutionary persistence and dominance over sensitive counterparts (LD-S). This study highlights how LD evolutionarily tackled antimony exposure and gained increased potential of scavenging host-iron within its parasitophorous vacuoles (PV) to support its aggressive proliferation. Even though anti-leishmanial activity of pentavalent antimonials relies on triggering oxidative outburst, LD-R exhibits a surprising strategy of promoting reactive oxygen species (ROS) generation in infected macrophages. An inherent metabolic shift from glycolysis to Pentose Phosphate shunt allows LD-R to withstand elevated ROS by sustaining heightened levels of NADPH. Elevated ROS levels on the other hand trigger excess iron production, and LD-R capitalizes on this surplus iron by selectively reshuffling macrophage-surface iron exporter, Ferroportin, around its PV thereby gaining a survival edge as a heme-auxotroph. Higher iron utilization by LD-R leads to subsequent iron insufficiency, compensated by increased erythrophagocytosis through the breakdown of SIRPα-CD47 surveillance, orchestrated by a complex interplay of two proteases, Furin and ADAM10. Understanding these mechanisms is crucial for managing LD-R-infections and their associated complications like severe anemia, and may also provide valuable mechanistic insights into understanding drug unresponsiveness developed in other intracellular pathogens that rely on host iron.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。