Investigating the optimum stocking density of tilapia (Oreochromis niloticus) for intensive production focused to in-pond raceway system

探讨以池塘水道系统为重点的集约化生产中罗非鱼(Oreochromis niloticus)的最佳放养密度

阅读:2
作者:Wajeeha Komal, Shafaq Fatima, Qandeel Minahal, Razia Liaqat

Abstract

The primary objective of this trial was to study the effects of stress caused by stocking density in tilapia (Oreochromis niloticus) cultured in the in-pond raceway system (IPRS). Fingerlings (Initial body weight = 30.00 ± 1.20 g) were reared at different stocking densities i.e. low stocking density (n = 13,000; 1.77 kg/m3), medium stocking density (MSD) (n = 17,000; 2.32 kg/m3), and high stocking density (HSD) (n = 21,000; 2.86 kg/m3), all confined within the raceways of the IPRS. Each group was studied in triplicates. The observed growth revealed a regression in the HSD treatment, evident in its reduced weight gain per fish per day, in contrast to other treatments. Survival rate across all treatments was above 99%. Notably, the HSD treatment exhibited an elevated level of cortisol; however, this intensified crowding stress did not significantly undermine the nutritional value of the fish in HSD and other experimental treatments. Furthermore, an elevation in the levels of superoxide dismutase, catalase, and glutathione peroxidase was noted within the HSD treatment in comparison to the other treatments to reduce the damage caused by reactive oxygen species. As the trial proceeded, functions of digestive enzymes like amylase, protease, and lipase diminished consistently across all treatments. This could possibly signify a deliberate redirection of energy resources toward stress alleviation rather than the usual digestive processes. In summation, it can be reasonably deduced that a stocking density of approximately 2.32 kg/m3 (MSD) emerges as the optimal threshold for effectively cultivating tilapia within an intensive aquaculture framework.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。