Engineering yeast to produce fraxetin from ferulic acid and lignin

改造酵母,利用阿魏酸和木质素生产 Fraxetin

阅读:3
作者:Bo-Tao He, Bing-Zhi Li

Abstract

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin. The expression of scopoletin 8-hydroxylase (S8H) and coumarin synthase (COSY) enabled S. cerevisiae to produce fraxetin from ferulic acid, one of the three principal monomers. The optimized fermentation strategies produced 19.1 mg/L fraxetin from ferulic acid by engineered S. cerevisiae. Additionally, the engineered cell factory achieved a fraxetin titer of 7.7 mg/L in lignin hydrolysate. This study successfully demonstrates the biotransformation of lignin monomers and lignin hydrolysate into fraxetin using a S. cerevisiae cell factory, thereby providing a viable strategy for the valorization of lignin. KEY POINTS: • AtS8H showed substance specificity in the hydroxylation of scopoletin. • AtCOSY and AtS8H were key enzymes for converting ferulic acid into fraxetin. • Yeast was engineered to produce fraxetin from lignin hydrolysate.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。