Multifaceted cancer alleviation by cowpea mosaic virus in a bioprinted ovarian cancer peritoneal spheroid model

豇豆花叶病毒在生物打印卵巢癌腹膜球体模型中发挥多方面癌症缓解作用

阅读:6
作者:Yi Xiang, Zhongchao Zhao, Emmie J Yao, Alis Balayan, Steven N Fiering, Nicole F Steinmetz, Shaochen Chen

Abstract

Ovarian cancer (OvCa) is a leading cause of mortality among gynecological malignancies and usually manifests as intraperitoneal spheroids that generate metastases, ascites, and an immunosuppressive tumor microenvironment. In this study, we explore the immunomodulatory properties of cowpea mosaic virus (CPMV) as an adjuvant immunotherapeutic agent using an in vitro model of OvCa peritoneal spheroids. Previous findings highlighted the potent efficacy of intratumoral CPMV against OvCa in mouse tumor models. Leveraging the precision control over material deposition and cell patterning afforded by digital-light-processing (DLP) based bioprinting, we constructed OvCa-macrophage spheroids to mimic peritoneal spheroids using gelatin methacrylate (GelMA), a collagen-derived photopolymerizable biomaterial to mimic the extracellular matrix. Following CPMV treatment, bioprinted spheroids exhibited inhibited OvCa progression mediated by macrophage activation. Our analysis indicates that CPMV regulates and activates macrophage to both induce OvCa cell killing and restore normal cell-cell junctions. This study deepened our understanding of the mechanism of CPMV intratumoral immunotherapy in the setting of OvCa. This study also highlights the potential of studying immunotherapies using high throughput tissue models via DLP bioprinting.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。