Notch-Expanded Murine Hematopoietic Stem and Progenitor Cells Mitigate Death from Lethal Radiation and Convey Immune Tolerance in Mismatched Recipients

Notch 扩增的小鼠造血干细胞和祖细胞可减轻致死辐射导致的死亡,并在错配受体中传递免疫耐受性

阅读:2
作者:Filippo Milano, Fabiola Merriam, Ian Nicoud, Jianqiang Li, Ted A Gooley, Shelly Heimfeld, Suzan Imren, Colleen Delaney

Abstract

The hematopoietic syndrome of acute radiation syndrome (h-ARS) is characterized by severe bone marrow aplasia, resulting in a significant risk for bleeding, infections, and death. To date, clinical management of h-ARS is limited to supportive care dictated by the level of radiation exposure, with a high incidence of mortality in those exposed to high radiation doses. The ideal therapeutic agent would be an immediately available, easily distributable single-agent therapy capable of rapid in vivo hematopoietic reconstitution until recovery of autologous hematopoiesis occurs. Using a murine model of h-ARS, we herein demonstrate that infusion of ex vivo expanded murine hematopoietic stem and progenitor cells (HSPCs) into major histocompatibility complex mismatched recipient mice exposed to a lethal dose of ionizing radiation (IR) led to rapid myeloid recovery and improved survival. Survival benefit was significant in a dose-dependent manner even when infusion of the expanded cell therapy was delayed 3 days after lethal IR exposure. Most surviving mice (80%) demonstrated long-term in vivo persistence of donor T cells at low levels, and none had evidence of graft versus host disease. Furthermore, survival of donor-derived skin grafts was significantly prolonged in recipients rescued from h-ARS by infusion of the mismatched expanded cell product. These findings provide evidence that ex vivo expanded mismatched HSPCs can provide rapid, high-level hematopoietic reconstitution, mitigate IR-induced mortality, and convey donor-specific immune tolerance in a murine h-ARS model. Stem Cells Translational Medicine 2017;6:566-575.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。