Quercetagetin alleviates inflammatory osteoclastogenesis and collagen antibody-induced arthritis via Nrf2 signaling and Pten/AKT/Nfatc1 axis

槲皮素通过 Nrf2 信号和 Pten/AKT/Nfatc1 轴减轻炎症破骨细胞生成和胶原抗体诱发的关节炎

阅读:3
作者:Haojue Wang, Tao Yuan, Jingpeng Wang, Dengju Li, Wayne Yuk-Wai Lee, Ziqing Li, Shui Sun2

Conclusions

Our study presents Quercetagetin 's therapeutic potential in treating RA, outlining its effects and potential mechanisms in suppressing LPS-induced osteoclast activity, and alleviating inflammatory bone destruction in CAIA model, thereby laying the groundwork for further translational research on Quercetagetin and Flos eriocauli in RA treatment.

Methods

Network pharmacology was conducted to decipher related targets and signaling pathways between Quercetagetin and RA. In vitro assays were then conducted to explore the effects of Quercetagetin on osteoclast cell behaviors and corresponding signaling pathways. In vivo study further validated the therapeutic effect of Quercetagetin in collagen antibody-induced arthritis (CAIA) mice.

Purpose

Quercetagetin, a flavonoid derived from the natural herb Flos eriocauli, is used in traditional Chinese medicine for its fire-purging (anti-inflammation) and wind-expelling (pain-alleviating) properties. However, its potential effects concerning rheumatoid arthritis (RA) remain underexplored. This study was designed to elucidate the potential associations between Quercetagetin and RA, establishing the therapeutic potential of Quercetagetin and related mechanisms in RA treatment.

Results

The network pharmacological analysis indicated an intimate correlation of Quercetagetin with RA-related inflammatory osteolysis treatment. Pertaining to biological validations, 2 µM of Quercetagetin successfully inhibited LPS-driven osteoclast differentiation and function. qPCR assay and Western blot analyses denoted parallel changes in osteoclastic marker genes and proteins. Further mechanism study uncovered the effect of Quercetagetin in stimulating the Nrf2/Keap1 signaling pathway and moderating the Pten/AKT/Nfatc1 axis in osteoclasts. In vivo study revealed 40 mg/kg Quercetagetin every day could significantly relief joint destruction in CAIA mice. Conclusions: Our study presents Quercetagetin 's therapeutic potential in treating RA, outlining its effects and potential mechanisms in suppressing LPS-induced osteoclast activity, and alleviating inflammatory bone destruction in CAIA model, thereby laying the groundwork for further translational research on Quercetagetin and Flos eriocauli in RA treatment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。