A polarized multicomponent foundation upholds ciliary central microtubules

极化多组分基础支撑纤毛中央微管

阅读:2
作者:Qingxia Chen, Huijie Zhao, Xinwen Pan, Chuyu Fang, Benhua Qiu, Jingting Guo, Xiumin Yan, Xueliang Zhu

Abstract

Cilia's back-and-forth beat pattern requires a central pair (CP) of microtubules. However, the mechanism by which the CP is upheld above the transition zone (TZ) remains unclear. Here, we showed that a rod-like substructure marked by Cep131 and ciliary Centrin serves as a polarized CP-supporting foundation. This CP-foundation (CPF) was assembled independently of the CP during ciliogenesis in mouse ependymal cells. It protruded from the distal end of the basal body out of the TZ to enwrap the proximal end of the CP. Through proximity labeling, we identified 26 potential CPF components, among which Ccdc148 specifically localized at the proximal region of Centrin-decorated CPF and was complementary to the Cep131-enriched distal region. Cep131 deficiency abolished the CPF, resulting in CP penetration into the TZ. Consequently, cilia became prone to ultrastructural abnormality and paralysis, and Cep131-deficient mice were susceptible to late-onset hydrocephalus. In addition to Centrin, phylogenetic analysis also indicated conservations of Ccdc131 and Ccdc148 from protists to mammals, suggesting that the CPF is an evolutionarily conserved multicomponent CP-supporting platform in cilia.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。