Upregulation of AKT3 Confers Resistance to the AKT Inhibitor MK2206 in Breast Cancer

AKT3 上调导致乳腺癌对 AKT 抑制剂 MK2206 产生耐药性

阅读:2
作者:Casey Stottrup, Tiffany Tsang, Y Rebecca Chin

Abstract

Acquired resistance to molecular targeted therapy represents a major challenge for the effective treatment of cancer. Hyperactivation of the PI3K/AKT pathway is frequently observed in virtually all human malignancies, and numerous PI3K and AKT inhibitors are currently under clinical evaluation. However, mechanisms of acquired resistance to AKT inhibitors have yet to be described. Here, we use a breast cancer preclinical model to identify resistance mechanisms to a small molecule allosteric AKT inhibitor, MK2206. Using a step-wise and chronic high-dose exposure, breast cancer cell lines harboring oncogenic PI3K resistant to MK2206 were established. Using this model, we reveal that AKT3 expression is markedly upregulated in AKT inhibitor-resistant cells. Induction of AKT3 is regulated epigenetically by the bromodomain and extra terminal domain proteins. Importantly, knockdown of AKT3, but not AKT1 or AKT2, in resistant cells restores sensitivity to MK2206. AKT inhibitor-resistant cells also display an epithelial to mesenchymal transition phenotype as assessed by alterations in the levels of E-Cadherin, N-Cadherin, and vimentin, as well as enhanced invasiveness of tumor spheroids. Notably, the invasive morphology of resistant spheroids is diminished upon AKT3 depletion. We also show that resistance to MK2206 is reversible because upon drug removal resistant cells regain sensitivity to AKT inhibition, accompanied by reexpression of epithelial markers and reduction of AKT3 expression, implying that epigenetic reprogramming contributes to acquisition of resistance. These findings provide a rationale for developing therapeutics targeting AKT3 to circumvent acquired resistance in breast cancer. Mol Cancer Ther; 15(8); 1964-74. ©2016 AACR.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。