1,25‑Dihydroxyvitamin D3 mitigates the adipogenesis induced by bisphenol A in 3T3-L1 and hAMSC through miR-27-3p regulation

1,25-二羟基维生素 D3 通过 miR-27-3p 调节减轻双酚 A 在 3T3-L1 和 hAMSC 中诱导的脂肪生成

阅读:2
作者:Donatella Paola Provvisiero #, Mariarosaria Negri #, Feliciana Amatrudo, Roberta Patalano, Tatiana Montò, Cristina de Angelis, Chiara Graziadio, Gabriella Pugliese, Giulia de Alteriis, Annamaria Colao, Rosario Pivonello, Silvia Savastano, Claudia Pivonello

Conclusions

These results suggest that in cultured 3T3-L1 and hAMSC VitD induces an anti-adipogenic effect and prevents BPA pro-adipogenic effect by triggering at least in part epigenetic mechanisms involving miR-27-3p.

Methods

3T3-L1, mouse pre-adipocytes and human adipose-derived mesenchymal stem cells (hAMSC) were treated with VitD (10-7 M) and BPA (10-8 M and 10-9 M), alone or in combination, throughout the differentiation in mature adipocytes. Cellular lipid droplet accumulation was assessed by Oil Red O staining, mRNA and protein expression of key adipogenic markers, transcription factors, and cytokines were investigated by RT-qPCR and WB, respectively. miRNAs involved in the regulation of adipogenic transcription factors were evaluated by RT-qPCR, and highly potent steric-blocking oligonucleotides (miRNA inhibitors) were used to modulate miRNAs expression.

Purpose

Endocrine-disrupting compounds, including bisphenol A (BPA), may promote obesity influencing basal metabolic rate and shifting metabolism towards energy storage. The role of 1,25‑Dihydroxyvitamin D3 (VitD) in counteracting adipogenesis is still a matter of debate. Thus, the current study aims to investigate whether and how VitD exposure during adipogenesis could prevent the pro-adipogenic effect of BPA in two adipocyte models, mouse 3T3-L1 cell line and human adipose-derived mesenchymal stem cells (hAMSC).

Results

Pre-adipocytes express VitD receptor (VDR) in basal condition, but during the differentiation process VDR expression reduces if not stimulated by the ligand. VitD significantly decreases lipid accumulation, with a consequent reduction in adipogenic marker expression, and counteracts the pro-adipogenic effect of BPA in 3T3-L1 and hAMSC during differentiation. This effect is associated to the increased expression of miR-27a-3p and miR-27b-3p. The blocking of miR-27a-3p and miR-27b-3p through miRNA inhibitors prevents the anti-adipogenic effect of VitD in both cell models. Conclusions: These results suggest that in cultured 3T3-L1 and hAMSC VitD induces an anti-adipogenic effect and prevents BPA pro-adipogenic effect by triggering at least in part epigenetic mechanisms involving miR-27-3p.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。