SDF-1 alleviates osteoarthritis by resolving mitochondrial dysfunction through the activation of the Sirt3/PGC-1α signalling pathway

SDF-1 通过激活 Sirt3/PGC-1α 信号通路解决线粒体功能障碍,从而缓解骨关节炎

阅读:9
作者:Yanping Zhao, Dan Lin, Xiaoying Zhu, Jingyao Yan, Yan Liang, Yanli Wang, Tianqi Dai, Zhiyi Zhang, Shuya Wang

Conclusions

SDF-1 can alleviate OA by resolving mitochondrial dysfunction through the activation of the Sirt3/PGC-1α signalling pathway, and therefore, SDF-1 may be a good candidate as a new treatment for OA.

Methods

OA chondrocytes and a collagen-induced osteoarthritis (CIOA) mouse model were used as in vitro and in vivo models, respectively. SDF-1 was used to treat OA in vitro and in vivo. To explore the mechanism of SDF-1 in OA treatment, we pretreated chondrocytes with a Sirt 3 inhibitor and assessed mitochondrial function and then analysed related indicators of cartilage anabolic and cartilage metabolism.

Objective

Osteoarthritis (OA) is the most common form of joint disease. Currently, OA treatment is limited to controlling symptoms. Our previous study showed that stromal cell-derived factor 1 (SDF-1) delayed the progression of OA to a certain extent. The aim of this study was to explore the specific mechanism of SDF-1 in OA. Materials and

Results

SOD2 and PGC-1α levels were significantly lower in OA chondrocytes and the cartilage of CIOA model mice than in normal chondrocytes, and mitochondrial dysfunction occurred in OA. After treating OA chondrocytes and CIOA model mice with exogenous SDF-1, mitochondrial dysfunction and abnormal biomarkers of OA normalized. The pretreatment of OA chondrocytes with a Sirt 3 inhibitor or mitochondrial function inhibitor before SDF-1 exposure reversed these changes. Conclusions: SDF-1 can alleviate OA by resolving mitochondrial dysfunction through the activation of the Sirt3/PGC-1α signalling pathway, and therefore, SDF-1 may be a good candidate as a new treatment for OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。