Biochemical Amenability in Fabry Patients Under Chaperone Therapy-How and When to Test?

接受伴侣治疗的法布雷病患者的生化适应性——如何以及何时进行检测?

阅读:15
作者:Malte Lenders, Elise Raphaela Menke, Eva Brand

Aim

Current recommendations for Fabry disease include α-galactosidase A (AGAL) activity measurements to assess the biochemical response in migalastat-treated patients. Owing to contradictory data from laboratories, we aimed to analyze why AGAL activity measures from dried blood spots (DBS) often fail to detect migalastat-mediated enzymatic activity increases in treated patients.

Conclusion

The optimal time for enzymatic AGAL activity measurement in migalastat-treated patients appears to be 24 h after the last migalastat intake. Since migalastat is a competitive inhibitor of AGAL, enzymatic AGAL activity measurements should be better performed from PBMCs to reduce migalastat-mediated interferences.

Methods

43 patients with 58 visits under migalastat were consecutively recruited. Enzymatic AGAL activities were measured from DBS and peripheral blood mononuclear cells (PBMCs). Migalastat concentrations in sera were determined using modified serum-mediated inhibition assays to assess Cmax and serum half-life.

Results

DBS-based AGAL activity measurements of 21 (42.0%) amenable patients were below the limit of detection. Serum samples from migalastat-treated patients showed significant AGAL inhibition, depending on the time between migalastat intake and blood sampling (r2 = 0.8140, p < 0.0001). Migalastat concentrations were determined in serum samples confirming a Cmax at 3 h and a serum half-life of 4 h. At 24 h after intake, migalastat clearance was significantly associated with renal function (r2 = 0.3135, p = 0.0102). Enzymatic AGAL activities were higher in samples from DBS and PBMCs 24 h after migalastat intake (both p < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。