Autophagy modulates tenogenic differentiation of cartilage-derived stem cells in response to mechanical tension via FGF signaling

自噬通过 FGF 信号调节软骨干细胞在机械张力作用下的肌腱分化

阅读:2
作者:Rui Zuo, Haoke Li, Chenhui Cai, Wen Xia, Jiabin Liu, Jie Li, Yuan Xu, Yi Zhang, Changqing Li, Yuzhang Wu, Chao Zhang

Background

In our previous study, we demonstrated that cartilage-derived stem cells (CDSCs) possess multi-differentiation potential, enabling direct bone-to-tendon structure regeneration after transplantation in a rat model. Therefore, the

Conclusion

Our findings provide insights into CDSC transplantation for achieving biological regeneration of tendon injuries, and demonstrate how modulation of autophagy in CDSCs can promote tenogenic differentiation in response to tensile stress both in vivo and in vitro.

Methods

Tenogenic differentiation was evaluated through cell morphology observation, PCR, and Western blot (WB) analysis. Autophagic flux, transmission electron microscopy, and WB analysis were employed to elucidate the role of autophagy during CDSC tenogenic differentiation. Cell survival and tenogenesis of transplanted CDSCs were assessed using fluorescence detection of gross and frozen section images. Heterotopic ossification and quality of tendon healing were evaluated by immunofluorescence, hematoxylin-eosin (H&E), and Safrinin O/Fast Green stains.

Results

We found autophagy is activated in CDSCs when treated with cyclic tensile stress, which facilitates the preservation of their chondrogenic potential while impeding tenogenic differentiation. Inhibiting autophagy with chloroquine promoted tenogenic differentiation of CDSCs in response to cyclic tensile stress through activation of the Fgf2/Fgfr2 signaling pathway. This mechanism was further validated by 2 mouse transplantation models, revealed that autophagy inhibition could enhance the tendon regeneration efficacy of transplanted CDSCs at the patellar tendon resection site.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。